
Pytest C
Release

John McNamara

Mar 08, 2018

Contents

1 The C Unit Tests 1

2 The Pytest hooks 3
2.1 The conftest.py file . 3
2.2 Finding test files . 5
2.3 The CTestFile Class . 5
2.4 Collecting the C unit test data . 6
2.5 Extracting the test data . 6
2.6 Formatting the test report . 7
2.7 Achievement Unlocked . 8

3 Running the Tests 9
3.1 The Default Output . 9
3.2 The Verbose Output . 10
3.3 Minimal Output . 11
3.4 Filtered Tests . 11
3.5 Other py.test Options . 12

4 Learn More 13

5 Using pytest as a testrunner for C unit tests 15

6 Wait, what? 17

7 Are you sure that is a good idea? 19

8 So, what is the use case? 21

9 Why Pytest? 23

10 Okay. I’m still with you, but barely 25

i

ii

CHAPTER 1

The C Unit Tests

This isn’t about how to write C unit tests.

The assumption is that you already have working tests that you just want to run and that these tests output some sort
of Pass/Fail information.

For the sake of example say we have a test case like this:

#include "test_macros.h"

void test_some_strings()
{

char *foo = "This is foo";
char *bar = "This is bar";

ASSERT_EQUAL_STR(foo, foo);
ASSERT_EQUAL_STR(foo, bar);

}

int main()
{

test_some_strings();

return 0;
}

And when we compile and run it we get output like this:

$ test/test_basic_strings

[PASS] test_basic_strings.c:test_some_strings():8

[FAIL] test_basic_strings.c:test_some_strings():9
[TST] ASSERT_EQUAL_STR(foo, bar)
[EXP] This is foo
[GOT] This is bar

1

Pytest C, Release

This is typical of a lot of test output and although the format is simple it contains a lot of useful information:

• The Pass/Fail condition.

• The C file name.

• The function/test name.

• The line number of the test assertion.

• The assertion that failed.

• The expected and actual output.

So, let’s see how we can run this or any number of similar tests automatically and capture and summarise the output.

The first step is to write the The Pytest hooks.

2 Chapter 1. The C Unit Tests

CHAPTER 2

The Pytest hooks

One of the many useful features of pytest is its easy extensibility. The pytest documentation has a full description
of Working with non-python tests on which this C unit test extension is heavily based.

At its simplest, pytest supports the creation of hooks in a file called conftest.py that can be placed in the root
folder where we wish to run the tests. This allows us to define, in Python, code to find test files, run them, and collect
the results. The nice thing about this is that we can create a hook layer between pytest and the C unit tests without
changing code in either one.

The conftest.py file is actually a per-directory file, so we can have different files for different test directories if
required.

2.1 The conftest.py file

First let’s look at the C unit test conftest.py in its entirety:

import subprocess
import pytest
import os

def pytest_collect_file(parent, path):
"""
A hook into py.test to collect test_*.c test files.

"""
if path.ext == ".c" and path.basename.startswith("test_"):

return CTestFile(path, parent)

class CTestFile(pytest.File):
"""
A custom file handler class for C unit test files.

3

http://pytest.org/latest/example/nonpython.html#non-python-tests

Pytest C, Release

"""

def collect(self):
"""
Overridden collect method to collect the results from each
C unit test executable.

"""
Run the exe that corresponds to the .c file and capture the output.
test_exe = os.path.splitext(str(self.fspath))[0]
test_output = subprocess.check_output(test_exe)

Clean up the unit test output and remove non test data lines.
lines = test_output.decode().split("\n")
lines = [line.strip() for line in lines]
lines = [line for line in lines if line.startswith("[")]

Extract the test metadata from the unit test output.
test_results = []
for line in lines:

token, data = line.split(" ", 1)
token = token[1:-1]

if token in ("PASS", "FAIL"):
file_name, function_name, line_number = data.split(":")
test_results.append({"condition": token,

"file_name": file_name,
"function_name": function_name,
"line_number": int(line_number),
"EXP": 'EXP(no data found)',
"GOT": 'GOT(no data found)',
"TST": 'TST(no data found)',
})

elif token in ("EXP", "GOT", "TST"):
test_results[-1][token] = data

for test_result in test_results:
yield CTestItem(test_result["function_name"], self, test_result)

class CTestItem(pytest.Item):
"""
Pytest.Item subclass to handle each test result item. There may be
more than one test result from a test function.

"""

def __init__(self, name, parent, test_result):
"""Overridden constructor to pass test results dict."""
super(CTestItem, self).__init__(name, parent)
self.test_result = test_result

def runtest(self):
"""The test has already been run. We just evaluate the result."""
if self.test_result["condition"] == "FAIL":

raise CTestException(self, self.name)

def repr_failure(self, exception):

4 Chapter 2. The Pytest hooks

Pytest C, Release

"""
Called when runtest() raises an exception. The method is used
to format the output of the failed test result.

"""
if isinstance(exception.value, CTestException):

return ("Test failed : {TST} at {file_name}:{line_number}\n"
" got: {GOT}\n"
" expected: {EXP}\n".format(**self.test_result))

def reportinfo(self):
""""Called to display header information about the test case."""
return self.fspath, self.test_result["line_number"] - 1, self.name

class CTestException(Exception):
"""Custom exception to distinguish C unit test failures from others."""
pass

This is less than 100 lines of Python, including comments, but it provides a lot of functionality.

If you would like to see this functionality in use then move on to Running the Tests.

If you are interested in seeing how this functionality is implemented, and how you could extend pytest for similar
tests then read on below and we will see how the conftest.py code works.

Running the Tests or the Gory Details. Choose your own adventure!

2.2 Finding test files

The first function in the code is a pytest hook function called pytest_collect_file():

def pytest_collect_file(parent, path):
if path.ext == ".c" and path.basename.startswith("test_"):

return CTestFile(path, parent)

This collects files based on any rule that we wish to write. In this case it collects files that look like test_*.c but
we could make the rule as specific as we wanted.

Once a file of the correct type is found a pytest.Node object of the corresponding type is created and returned. In
our case this is a CTestFile object which is derived from the pytest.File class.

2.3 The CTestFile Class

The CTestFile object that we instantiated in the pytest_collect_file() hook inherits from the pytest.
File class which in turn inherits from pytest.Collection and pytest.Node. The Node class and its sub-
classes have a collect() method which returns pytest.Items objects:

class CTestFile(pytest.File):

def collect(self):
Returns pytest.Items.

The pytest hierarchy and methods are explained in more detail in the Working with plugins and conftest files section
of the Pytest documentation.

2.2. Finding test files 5

http://pytest.org/latest/plugins.html

Pytest C, Release

Depending on the types of tests that are being run the collected items might be individual test results or even test cases
that are being staged to run.

However, in our case we are going to take a simplified approach that lends itself to statically compiled test cases such
as C unit tests:

• For each test_something.c file assume there is a test_something executable.

• Run the test_something executable and capture the output.

• Parse the Pass/Fail results and any available metadata.

• Return each test results as a python dict with information that can be used for reporting.

2.4 Collecting the C unit test data

So with this methodology in mind the first step is to run the collected C unit tests and capture the output.

As stated above we are going to assume that the C unit tests are structured so that for each test_something.
c source file there is a test_something executable. This is a reasonable assumption based on the way most
test suites are laid out but it may not hold for specific implementations where, for example, multiple .c files might
be compiled to object files and linked into a single test runner executable. For cases like that more a sophisticated
pytest_collect_file() implementation can be used.

We are also going to assume, again reasonably, that the unit test executables are tied into a build system and have
already been built via make, make test or something similar.

In conftest.py the following code runs the executable that corresponds to the .c file and captures the output:

def collect(self):

test_exe = os.path.splitext(str(self.fspath))[0]
test_output = subprocess.check_output(test_exe)

A more robust implementation would probably confirm the existence of the executable and return a fail condition if it
wasn’t present.

2.5 Extracting the test data

This section of the code shows the main functionality that converts the output of the test cases into a format that can
be used by pytest. If you are using this document as a guide to running your own tests then this section is the part
that you will have to modify to conform to your test output.

In our sample unit test the captured output will look something like the following:

[PASS] test_basic_strings.c:test_some_strings():8

[FAIL] test_basic_strings.c:test_some_strings():9
[TST] ASSERT_EQUAL_STR(foo, bar)
[EXP] This is foo
[GOT] This is bar

We clean up the unit test output and remove non test data lines as follows:

lines = test_output.split("\n")
lines = [line.strip() for line in lines]
lines = [line for line in lines if line.startswith("[")]

6 Chapter 2. The Pytest hooks

Pytest C, Release

We then extract the test metadata from the reformatted test output:

test_results = []
for line in lines:

token, data = line.split(" ", 1)
token = token[1:-1]

if token in ("PASS", "FAIL"):
file_name, function_name, line_number = data.split(":")
test_results.append({"condition": token,

"file_name": file_name,
"function_name": function_name,
"line_number": int(line_number),
"EXP": 'EXP(no data found)',
"GOT": 'GOT(no data found)',
"TST": 'TST(no data found)',
})

elif token in ("EXP", "GOT", "TST"):
test_results[-1][token] = data

Once this is complete we should end up with a collection of data structures like the following:

{'condition': 'FAIL',
'file_name': 'test_basic_strings.c',
'function_name': 'test_some_strings()',
'TST': 'ASSERT_EQUAL_STR(foo, bar)',
'EXP': 'This is foo',
'GOT': 'This is bar',
'line_number': 9 }

These results are then returned as a pytest.Item:

for test_result in test_results:
yield CTestItem(test_result["function_name"], self, test_result)

Note, it isn’t essential that we capture all of the information shown above. None of it is strictly required by pytest
apart from the test function name. The idea here is that we try to capture any usefule information that we want to
display in the testrunner output. In the next section we will see how we can format and display that information.

2.6 Formatting the test report

The pytest.Item that we return in the previous step is an instance of a subclass so that we can control the test
result formatting. We also override the constructor so that we can pass the test result data structure as an additional
parameter:

class CTestItem(pytest.Item):

def __init__(self, name, parent, test_result):
super(CTestItem, self).__init__(name, parent)
self.test_result = test_result

To control the test result reporting and formatting we have to override three pytest.Item methods: runtest(),
repr_failure() and reportinfo().

2.6. Formatting the test report 7

Pytest C, Release

In our case, the runtest() method isn’t actually used to run a test since we already did that in the collect()
method of our CTestFile class. Instead we just check for FAIL results and throw an exception when we find one:

def runtest(self):
if self.test_result["condition"] == "FAIL":

raise CTestException(self, self.name)

We use a user defined exception class in order to distinguish it from other exceptions. The exception is then caught
and handled in the repr_failure() method where we format the output for the failed test case:

def repr_failure(self, exception):
if isinstance(exception.value, CTestException):

return ("Test failed : {TST} at {file_name}:{line_number}\n"
" got: {GOT}\n"
" expected: {EXP}\n".format(**self.test_result))

Finally we provide one additional piece of information that will be used in verbose test display:

def reportinfo(self):
return self.fspath, self.test_result["line_number"] - 1, self.name

2.7 Achievement Unlocked

Congratulations. You made it to the end of the code and have unlocked the Adventurous badge.

Now let’s see how to we go about Running the Tests.

8 Chapter 2. The Pytest hooks

CHAPTER 3

Running the Tests

So finally we are at the stage where we can run the test cases.

If you’d like to try this for yourself the code is included in a project on GitHub so that you try out different options.
The examples below show some of the more common ones.

3.1 The Default Output

Here is the default output from py.test (the command line testrunner of pytest):

$ make

$ py.test
========================= test session starts ==========================
platform darwin -- Python 2.7.2 -- py-1.4.20 -- pytest-2.5.2
collected 9 items

test/test_basic_integers.c ..FF
test/test_basic_strings.c .FFF.

=============================== FAILURES ===============================
_________________________ test_more_integers() _________________________
Test failed : ASSERT_EQUAL_STR(313, 33) at test_basic_integers.c:19

got: 33
expected: 313

_________________________ test_more_integers() _________________________
Test failed : ASSERT_EQUAL_STR(12, 2) at test_basic_integers.c:20

got: 2
expected: 12

_________________________ test_some_strings() __________________________
Test failed : ASSERT_EQUAL_STR(foo, bar) at test_basic_strings.c:17

got: This is bar

9

http://github.com/jmcnamara/pytest_c_testrunner

Pytest C, Release

expected: This is foo

_________________________ test_more_strings() __________________________
Test failed : ASSERT_EQUAL_STR(bar, bar + 1) at test_basic_strings.c:25

got: his is bar
expected: This is bar

_________________________ test_more_strings() __________________________
Test failed : ASSERT_EQUAL_STR(foo, NULL) at test_basic_strings.c:26

got: (null)
expected: This is foo

================== 5 failed, 4 passed in 0.19 seconds ==================

3.2 The Verbose Output

Here is the verbose output:

$ py.test -v
========================= test session starts ==========================
platform darwin -- Python 2.7.2 -- py-1.4.20 -- pytest-2.5.2
collected 9 items

test/test_basic_integers.c:13: test_some_integers() PASSED
test/test_basic_integers.c:14: test_some_integers() PASSED
test/test_basic_integers.c:19: test_more_integers() FAILED
test/test_basic_integers.c:20: test_more_integers() FAILED
test/test_basic_strings.c:16: test_some_strings() PASSED
test/test_basic_strings.c:17: test_some_strings() FAILED
test/test_basic_strings.c:25: test_more_strings() FAILED
test/test_basic_strings.c:26: test_more_strings() FAILED
test/test_basic_strings.c:27: test_more_strings() PASSED

=============================== FAILURES ===============================
_________________________ test_more_integers() _________________________
Test failed : ASSERT_EQUAL_STR(313, 33) at test_basic_integers.c:19

got: 33
expected: 313

_________________________ test_more_integers() _________________________
Test failed : ASSERT_EQUAL_STR(12, 2) at test_basic_integers.c:20

got: 2
expected: 12

_________________________ test_some_strings() __________________________
Test failed : ASSERT_EQUAL_STR(foo, bar) at test_basic_strings.c:17

got: This is bar
expected: This is foo

_________________________ test_more_strings() __________________________
Test failed : ASSERT_EQUAL_STR(bar, bar + 1) at test_basic_strings.c:25

got: his is bar
expected: This is bar

_________________________ test_more_strings() __________________________

10 Chapter 3. Running the Tests

Pytest C, Release

Test failed : ASSERT_EQUAL_STR(foo, NULL) at test_basic_strings.c:26
got: (null)

expected: This is foo

================== 5 failed, 4 passed in 0.23 seconds ==================

The first part of this is shown is colour:

3.3 Minimal Output

Here is some “quiet” output with the trace back hidden:

$ py.test -q --tb=no
..FF.FFF.
5 failed, 4 passed in 0.19 seconds

3.4 Filtered Tests

Here are results from all tests filtered to show only ones that match “strings” in the name:

$ py.test -k strings
========================= test session starts ==========================
platform darwin -- Python 2.7.2 -- py-1.4.20 -- pytest-2.5.2
collected 9 items

test/test_basic_strings.c .FFF.

=============================== FAILURES ===============================
_________________________ test_some_strings() __________________________
Test failed : ASSERT_EQUAL_STR(foo, bar) at test_basic_strings.c:17

got: This is bar
expected: This is foo

_________________________ test_more_strings() __________________________

3.3. Minimal Output 11

Pytest C, Release

Test failed : ASSERT_EQUAL_STR(bar, bar + 1) at test_basic_strings.c:25
got: his is bar

expected: This is bar

_________________________ test_more_strings() __________________________
Test failed : ASSERT_EQUAL_STR(foo, NULL) at test_basic_strings.c:26

got: (null)
expected: This is foo

================== 4 tests deselected by '-kstrings' ===================
=========== 3 failed, 2 passed, 4 deselected in 0.19 seconds ===========

3.5 Other py.test Options

Other testrunner options are shown in the Pytest Usage and Invocations documentation.

You can also Learn More about this document and the sample test code.

12 Chapter 3. Running the Tests

http://pytest.org/latest/usage.html#usage

CHAPTER 4

Learn More

The source code for the Python hooks and C unit tests are on GitHub: http://github.com/jmcnamara/pytest_c_
testrunner

The documentation is on ReadTheDocs: http://pytest-c-testrunner.readthedocs.org

13

http://github.com/jmcnamara/pytest_c_testrunner
http://github.com/jmcnamara/pytest_c_testrunner
http://pytest-c-testrunner.readthedocs.org

Pytest C, Release

14 Chapter 4. Learn More

CHAPTER 5

Using pytest as a testrunner for C unit tests

This document shows how to use the Python pytest test tool to run unit tests written in C.

15

Pytest C, Release

16 Chapter 5. Using pytest as a testrunner for C unit tests

CHAPTER 6

Wait, what?

I’m going to show you how to run C unit tests using the Python test tool pytest.

17

Pytest C, Release

18 Chapter 6. Wait, what?

CHAPTER 7

Are you sure that is a good idea?

No. I’m pretty sure it isn’t.

If you want to write and run C unit tests then there are a lot of better alternatives such as Unity or GoogleTest (for
C/C++ testing) or many others.

19

http://throwtheswitch.org/white-papers/unity-intro.html
https://code.google.com/p/googletest/
http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#C

Pytest C, Release

20 Chapter 7. Are you sure that is a good idea?

CHAPTER 8

So, what is the use case?

Established C test frameworks are a better alternative when you are starting a project from scratch. However, if you
have existing C unit tests that you just want to execute, then rewriting them to conform to a new framework probably
isn’t worth the effort.

Equally, writing a testrunner that is flexible enough to run all or a subset of the tests, that can output the results in JUnit
or other formats, or that can filter results into concise reports probably isn’t worth the effort either.

In which case it would be better to use an existing testrunner that supports all these features and that can be easily
extended to capture the output from existing C unit tests without having to modify them.

21

Pytest C, Release

22 Chapter 8. So, what is the use case?

CHAPTER 9

Why Pytest?

Pytest is a really nice Python testing tool.

It has good documentation, clean code, lots of tests, a large but clear set of options for running tests and collecting
results and best of all it is easily extensible.

23

http://pytest.org/latest/index.html
http://pytest.org/latest/contents.html#toc

Pytest C, Release

24 Chapter 9. Why Pytest?

CHAPTER 10

Okay. I’m still with you, but barely

Then read on and I’ll see if I can convince you with a working example.

So let’s start with The C Unit Tests.

25

	The C Unit Tests
	The Pytest hooks
	The conftest.py file
	Finding test files
	The CTestFile Class
	Collecting the C unit test data
	Extracting the test data
	Formatting the test report
	Achievement Unlocked

	Running the Tests
	The Default Output
	The Verbose Output
	Minimal Output
	Filtered Tests
	Other py.test Options

	Learn More
	Using pytest as a testrunner for C unit tests
	Wait, what?
	Are you sure that is a good idea?
	So, what is the use case?
	Why Pytest?
	Okay. I’m still with you, but barely

