

Pytest & C

Using pytest as a testrunner for C unit tests

This document shows how to use the Python pytest test tool to run unit
tests written in C.

[image: _images/output.png]

Wait, what?

I’m going to show you how to run C unit tests using the Python test tool
pytest.

Are you sure that is a good idea?

No. I’m pretty sure it isn’t.

If you want to write and run C unit tests then there are a lot of better
alternatives such as
Unity [http://throwtheswitch.org/white-papers/unity-intro.html] or
GoogleTest [https://code.google.com/p/googletest/] (for C/C++ testing) or
many others [http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#C].

So, what is the use case?

Established C test frameworks are a better alternative when you are starting a
project from scratch. However, if you have existing C unit tests that you just
want to execute, then rewriting them to conform to a new framework probably
isn’t worth the effort.

Equally, writing a testrunner that is flexible enough to run all or a subset
of the tests, that can output the results in JUnit or other formats, or that
can filter results into concise reports probably isn’t worth the effort either.

In which case it would be better to use an existing testrunner that supports
all these features and that can be easily extended to capture the output from
existing C unit tests without having to modify them.

Why Pytest?

Pytest [http://pytest.org/latest/index.html] is a really nice Python testing
tool.

It has good documentation [http://pytest.org/latest/contents.html#toc],
clean code, lots of tests, a large but clear set of options for running tests
and collecting results and best of all it is easily extensible.

Okay. I’m still with you, but barely

Then read on and I’ll see if I can convince you with a working example.

So let’s start with The C Unit Tests.

The C Unit Tests

This isn’t about how to write C unit tests.

The assumption is that you already have working tests that you just want to run
and that these tests output some sort of Pass/Fail information.

For the sake of example say we have a test case like this:

#include "test_macros.h"

void test_some_strings()
{
 char *foo = "This is foo";
 char *bar = "This is bar";

 ASSERT_EQUAL_STR(foo, foo);
 ASSERT_EQUAL_STR(foo, bar);
}

int main()
{
 test_some_strings();

 return 0;
}

And when we compile and run it we get output like this:

$ test/test_basic_strings

[PASS] test_basic_strings.c:test_some_strings():8

[FAIL] test_basic_strings.c:test_some_strings():9
 [TST] ASSERT_EQUAL_STR(foo, bar)
 [EXP] This is foo
 [GOT] This is bar

This is typical of a lot of test output and although the format is simple it
contains a lot of useful information:

	The Pass/Fail condition.

	The C file name.

	The function/test name.

	The line number of the test assertion.

	The assertion that failed.

	The expected and actual output.

So, let’s see how we can run this or any number of similar tests automatically
and capture and summarise the output.

The first step is to write the The Pytest hooks.

The Pytest hooks

One of the many useful features of pytest is its easy extensibility. The
pytest documentation has a full description of
Working with non-python tests [http://pytest.org/latest/example/nonpython.html#non-python-tests]
on which this C unit test extension is heavily based.

At its simplest, pytest supports the creation of hooks in a file called
conftest.py that can be placed in the root folder where we wish to run the
tests. This allows us to define, in Python, code to find test files, run them,
and collect the results. The nice thing about this is that we can create a
hook layer between pytest and the C unit tests without changing code in
either one.

The conftest.py file is actually a per-directory file, so we can have
different files for different test directories if required.

The conftest.py file

First let’s look at the C unit test conftest.py in its entirety:

import subprocess
import pytest
import os

def pytest_collect_file(parent, path):
 """
 A hook into py.test to collect test_*.c test files.

 """
 if path.ext == ".c" and path.basename.startswith("test_"):
 return CTestFile(path, parent)

class CTestFile(pytest.File):
 """
 A custom file handler class for C unit test files.

 """

 def collect(self):
 """
 Overridden collect method to collect the results from each
 C unit test executable.

 """
 # Run the exe that corresponds to the .c file and capture the output.
 test_exe = os.path.splitext(str(self.fspath))[0]
 test_output = subprocess.check_output(test_exe)

 # Clean up the unit test output and remove non test data lines.
 lines = test_output.decode().split("\n")
 lines = [line.strip() for line in lines]
 lines = [line for line in lines if line.startswith("[")]

 # Extract the test metadata from the unit test output.
 test_results = []
 for line in lines:
 token, data = line.split(" ", 1)
 token = token[1:-1]

 if token in ("PASS", "FAIL"):
 file_name, function_name, line_number = data.split(":")
 test_results.append({"condition": token,
 "file_name": file_name,
 "function_name": function_name,
 "line_number": int(line_number),
 "EXP": 'EXP(no data found)',
 "GOT": 'GOT(no data found)',
 "TST": 'TST(no data found)',
 })
 elif token in ("EXP", "GOT", "TST"):
 test_results[-1][token] = data

 for test_result in test_results:
 yield CTestItem(test_result["function_name"], self, test_result)

class CTestItem(pytest.Item):
 """
 Pytest.Item subclass to handle each test result item. There may be
 more than one test result from a test function.

 """

 def __init__(self, name, parent, test_result):
 """Overridden constructor to pass test results dict."""
 super(CTestItem, self).__init__(name, parent)
 self.test_result = test_result

 def runtest(self):
 """The test has already been run. We just evaluate the result."""
 if self.test_result["condition"] == "FAIL":
 raise CTestException(self, self.name)

 def repr_failure(self, exception):
 """
 Called when runtest() raises an exception. The method is used
 to format the output of the failed test result.

 """
 if isinstance(exception.value, CTestException):
 return ("Test failed : {TST} at {file_name}:{line_number}\n"
 " got: {GOT}\n"
 " expected: {EXP}\n".format(**self.test_result))

 def reportinfo(self):
 """"Called to display header information about the test case."""
 return self.fspath, self.test_result["line_number"] - 1, self.name

class CTestException(Exception):
 """Custom exception to distinguish C unit test failures from others."""
 pass

This is less than 100 lines of Python, including comments, but it provides a
lot of functionality.

If you would like to see this functionality in use then move on to
Running the Tests.

If you are interested in seeing how this functionality is implemented, and how
you could extend pytest for similar tests then read on below and we will
see how the conftest.py code works.

Running the Tests or the Gory Details. Choose your own adventure!

Finding test files

The first function in the code is a pytest hook function called
pytest_collect_file():

def pytest_collect_file(parent, path):
 if path.ext == ".c" and path.basename.startswith("test_"):
 return CTestFile(path, parent)

This collects files based on any rule that we wish to write. In this case it
collects files that look like
test_*.c but we could make the rule as specific as we wanted.

Once a file of the correct type is found a pytest.Node object of the
corresponding type is created and returned. In our case this is a
CTestFile object which is derived from the pytest.File class.

The CTestFile Class

The CTestFile object that we instantiated in the pytest_collect_file()
hook inherits from the pytest.File class which in turn inherits from
pytest.Collection and pytest.Node. The Node class and its
subclasses have a collect() method which returns pytest.Items objects:

class CTestFile(pytest.File):

 def collect(self):
 # Returns pytest.Items.

The pytest hierarchy and methods are explained in more detail in the
Working with plugins and conftest files [http://pytest.org/latest/plugins.html]
section of the Pytest documentation.

Depending on the types of tests that are being run the collected items might be
individual test results or even test cases that are being staged to run.

However, in our case we are going to take a simplified approach that lends
itself to statically compiled test cases such as C unit tests:

	For each test_something.c file assume there is a test_something
executable.

	Run the test_something executable and capture the output.

	Parse the Pass/Fail results and any available metadata.

	Return each test results as a python dict with information that can be used
for reporting.

Collecting the C unit test data

So with this methodology in mind the first step is to run the collected C unit
tests and capture the output.

As stated above we are going to assume that the C unit tests are structured so
that for each test_something.c source file there is a test_something
executable. This is a reasonable assumption based on the way most test suites
are laid out but it may not hold for specific implementations where, for
example, multiple .c files might be compiled to object files and linked
into a single test runner executable. For cases like that more a sophisticated
pytest_collect_file() implementation can be used.

We are also going to assume, again reasonably, that the unit test executables
are tied into a build system and have already been built via make,
make test or something similar.

In conftest.py the following code runs the executable that corresponds to
the .c file and captures the output:

def collect(self):

 test_exe = os.path.splitext(str(self.fspath))[0]
 test_output = subprocess.check_output(test_exe)

A more robust implementation would probably confirm the existence of the
executable and return a fail condition if it wasn’t present.

Extracting the test data

This section of the code shows the main functionality that converts the output
of the test cases into a format that can be used by pytest. If you are
using this document as a guide to running your own tests then this section is
the part that you will have to modify to conform to your test output.

In our sample unit test the captured output will look something like the
following:

[PASS] test_basic_strings.c:test_some_strings():8

[FAIL] test_basic_strings.c:test_some_strings():9
 [TST] ASSERT_EQUAL_STR(foo, bar)
 [EXP] This is foo
 [GOT] This is bar

We clean up the unit test output and remove non test data lines as follows:

lines = test_output.split("\n")
lines = [line.strip() for line in lines]
lines = [line for line in lines if line.startswith("[")]

We then extract the test metadata from the reformatted test output:

test_results = []
for line in lines:
 token, data = line.split(" ", 1)
 token = token[1:-1]

 if token in ("PASS", "FAIL"):
 file_name, function_name, line_number = data.split(":")
 test_results.append({"condition": token,
 "file_name": file_name,
 "function_name": function_name,
 "line_number": int(line_number),
 "EXP": 'EXP(no data found)',
 "GOT": 'GOT(no data found)',
 "TST": 'TST(no data found)',
 })
 elif token in ("EXP", "GOT", "TST"):
 test_results[-1][token] = data

Once this is complete we should end up with a collection of data structures
like the following:

{'condition': 'FAIL',
 'file_name': 'test_basic_strings.c',
 'function_name': 'test_some_strings()',
 'TST': 'ASSERT_EQUAL_STR(foo, bar)',
 'EXP': 'This is foo',
 'GOT': 'This is bar',
 'line_number': 9 }

These results are then returned as a pytest.Item:

for test_result in test_results:
 yield CTestItem(test_result["function_name"], self, test_result)

Note, it isn’t essential that we capture all of the information shown above.
None of it is strictly required by pytest apart from the test function
name. The idea here is that we try to capture any usefule information that we
want to display in the testrunner output. In the next section we will see how
we can format and display that information.

Formatting the test report

The pytest.Item that we return in the previous step is an instance of a
subclass so that we can control the test result formatting. We also override
the constructor so that we can pass the test result data structure as an
additional parameter:

class CTestItem(pytest.Item):

 def __init__(self, name, parent, test_result):
 super(CTestItem, self).__init__(name, parent)
 self.test_result = test_result

To control the test result reporting and formatting we have to override three
pytest.Item methods: runtest(), repr_failure() and
reportinfo().

In our case, the runtest() method isn’t actually used to run a test since
we already did that in the collect() method of our CTestFile class.
Instead we just check for FAIL results and throw an exception when we find
one:

def runtest(self):
 if self.test_result["condition"] == "FAIL":
 raise CTestException(self, self.name)

We use a user defined exception class in order to distinguish it from other
exceptions. The exception is then caught and handled in the repr_failure()
method where we format the output for the failed test case:

def repr_failure(self, exception):
 if isinstance(exception.value, CTestException):
 return ("Test failed : {TST} at {file_name}:{line_number}\n"
 " got: {GOT}\n"
 " expected: {EXP}\n".format(**self.test_result))

Finally we provide one additional piece of information that will be used in
verbose test display:

def reportinfo(self):
 return self.fspath, self.test_result["line_number"] - 1, self.name

Achievement Unlocked

Congratulations. You made it to the end of the code and have unlocked the
Adventurous badge.

Now let’s see how to we go about Running the Tests.

Running the Tests

So finally we are at the stage where we can run the test cases.

If you’d like to try this for yourself
the code is included in a project on GitHub [http://github.com/jmcnamara/pytest_c_testrunner]
so that you try out different options. The examples below show some of the
more common ones.

The Default Output

Here is the default output from py.test (the command line testrunner of
pytest):

$ make

$ py.test
========================= test session starts ==========================
platform darwin -- Python 2.7.2 -- py-1.4.20 -- pytest-2.5.2
collected 9 items

test/test_basic_integers.c ..FF
test/test_basic_strings.c .FFF.

=============================== FAILURES ===============================
_________________________ test_more_integers() _________________________
Test failed : ASSERT_EQUAL_STR(313, 33) at test_basic_integers.c:19
 got: 33
 expected: 313

_________________________ test_more_integers() _________________________
Test failed : ASSERT_EQUAL_STR(12, 2) at test_basic_integers.c:20
 got: 2
 expected: 12

_________________________ test_some_strings() __________________________
Test failed : ASSERT_EQUAL_STR(foo, bar) at test_basic_strings.c:17
 got: This is bar
 expected: This is foo

_________________________ test_more_strings() __________________________
Test failed : ASSERT_EQUAL_STR(bar, bar + 1) at test_basic_strings.c:25
 got: his is bar
 expected: This is bar

_________________________ test_more_strings() __________________________
Test failed : ASSERT_EQUAL_STR(foo, NULL) at test_basic_strings.c:26
 got: (null)
 expected: This is foo

================== 5 failed, 4 passed in 0.19 seconds ==================

The Verbose Output

Here is the verbose output:

$ py.test -v
========================= test session starts ==========================
platform darwin -- Python 2.7.2 -- py-1.4.20 -- pytest-2.5.2
collected 9 items

test/test_basic_integers.c:13: test_some_integers() PASSED
test/test_basic_integers.c:14: test_some_integers() PASSED
test/test_basic_integers.c:19: test_more_integers() FAILED
test/test_basic_integers.c:20: test_more_integers() FAILED
test/test_basic_strings.c:16: test_some_strings() PASSED
test/test_basic_strings.c:17: test_some_strings() FAILED
test/test_basic_strings.c:25: test_more_strings() FAILED
test/test_basic_strings.c:26: test_more_strings() FAILED
test/test_basic_strings.c:27: test_more_strings() PASSED

=============================== FAILURES ===============================
_________________________ test_more_integers() _________________________
Test failed : ASSERT_EQUAL_STR(313, 33) at test_basic_integers.c:19
 got: 33
 expected: 313

_________________________ test_more_integers() _________________________
Test failed : ASSERT_EQUAL_STR(12, 2) at test_basic_integers.c:20
 got: 2
 expected: 12

_________________________ test_some_strings() __________________________
Test failed : ASSERT_EQUAL_STR(foo, bar) at test_basic_strings.c:17
 got: This is bar
 expected: This is foo

_________________________ test_more_strings() __________________________
Test failed : ASSERT_EQUAL_STR(bar, bar + 1) at test_basic_strings.c:25
 got: his is bar
 expected: This is bar

_________________________ test_more_strings() __________________________
Test failed : ASSERT_EQUAL_STR(foo, NULL) at test_basic_strings.c:26
 got: (null)
 expected: This is foo

================== 5 failed, 4 passed in 0.23 seconds ==================

The first part of this is shown is colour:

[image: _images/output.png]

Minimal Output

Here is some “quiet” output with the trace back hidden:

$ py.test -q --tb=no
..FF.FFF.
5 failed, 4 passed in 0.19 seconds

Filtered Tests

Here are results from all tests filtered to show only ones that match “strings”
in the name:

$ py.test -k strings
========================= test session starts ==========================
platform darwin -- Python 2.7.2 -- py-1.4.20 -- pytest-2.5.2
collected 9 items

test/test_basic_strings.c .FFF.

=============================== FAILURES ===============================
_________________________ test_some_strings() __________________________
Test failed : ASSERT_EQUAL_STR(foo, bar) at test_basic_strings.c:17
 got: This is bar
 expected: This is foo

_________________________ test_more_strings() __________________________
Test failed : ASSERT_EQUAL_STR(bar, bar + 1) at test_basic_strings.c:25
 got: his is bar
 expected: This is bar

_________________________ test_more_strings() __________________________
Test failed : ASSERT_EQUAL_STR(foo, NULL) at test_basic_strings.c:26
 got: (null)
 expected: This is foo

================== 4 tests deselected by '-kstrings' ===================
=========== 3 failed, 2 passed, 4 deselected in 0.19 seconds ===========

Other py.test Options

Other testrunner options are shown in the Pytest
Usage and Invocations [http://pytest.org/latest/usage.html#usage]
documentation.

You can also Learn More about this document and the sample test code.

Learn More

The source code for the Python hooks and C unit tests are on GitHub:
http://github.com/jmcnamara/pytest_c_testrunner

The documentation is on ReadTheDocs: http://pytest-c-testrunner.readthedocs.org

Index

 _images/output.png
‘test session starts
platform linux2 - Python 2.7.3 - py-1.4.20 - pytest-:
collected 9 items

test/test_basic_integers.c:14: test_some_integers() ASSED
test/test_basic_integers.c:15: test_some_integers() ASSED
test/test_basic_integers.ci21: test more_integers() FATLED
test/test_basic_integers.ci22: test more_integers() FATLED
test/test_basic_strings.c:16: test_some_strings() PASSED
test/test_basic_strings.c:17: test_some_strings() PASSED
test/test_basic_strings.c:26: test_more_strings() FAILED
test/test_basic_strings.c:27: test_more_strings() FAILED
test/test_basic_strings.c:28: test_more_strings() PASSED

nav.xhtml

 Table of Contents

 		
 Pytest & C

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

